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Abstract

In this paper lower and upper bounds for the number of support vectors are derived
for support vector machines (SVMs) based on theε-insensitive loss function. It
turns out that these bounds are asymptotically tight under mild assumptions on the
data generating distribution. Finally, we briefly discuss a trade-off inε between
sparsity and accuracy if the SVM is used to estimate the conditional median.

1 Introduction

Given a reproducing kernel Hilbert space (RKHS) of a kernelk : X × X → R and training set
D := ((x1, y1), . . . , (xn, yn)) ∈ (X × R)n, the ε-insensitive SVM proposed by Vapnik and his
co-workers [10, 11] for regression tasks finds the unique minimizerfD,λ ∈ H of the regularized
empirical risk

λ‖f‖2H +
1
n

n∑
i=1

Lε(yi, f(xi)) , (1)

whereLε denotes theε-insensitive loss defined byLε(y, t) := max{0, |y − t| − ε} for all y, t ∈ R
and some fixedε ≥ 0. It is well known, see e.g. [2, Proposition 6.21], that the solution is of the form

fD,λ =
n∑

i=1

β∗i k(xi, · ) , (2)

where the coefficientsβ∗i are a solution of the optimization problem

maximize
n∑

i=1

yiβi − ε
n∑

i=1

|βi| −
1
2

n∑
i,j=1

βiβjk(xi, xj) (3)

subject to −C ≤ βi ≤ C for all i = 1, . . . , n. (4)

Here we setC := 1/(2λn). Note that the equality constraint
∑n

i=1 βi = 0 needed in [2, Proposition
6.21] is superfluous since we do not include an offset termb in the primal problem (1). In the
following, we writeSV (fD,λ) := {i : β∗i 6= 0} for the set of indices that belong to the support
vectors offD,λ. Furthermore, we write# for the counting measure, and hence#SV (fD,λ) denotes
the number of support vectors offD,λ.

It is obvious from (2) that#SV (fD,λ) has a crucial influence on the time needed to compute
fD,λ(x). Due to this fact, theε-insensitive loss was originally motivated by the goal to achieve
sparsedecision functions, i.e., decision functionsfD,λ with #SV (fD,λ) < n. Although empiri-
cally it is well-known that theε-insensitive SVM achieves this sparsity, there is, so far, no theo-
retical explanation in the sense of [5]. The goal of this work is to provide such an explanation by
establishing asymptotically tight lower and upper bounds for the number of support vectors. Based
on these bounds we then investigate the trade-off between sparsity and estimation accuracy of the
ε-insensitive SVM.
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2 Main results

Before we can formulate our main results we need to introduce some more notations. To this end,
let P be a probability measure onX ×R, whereX is some measurable space. Given a measurable
f : X → R, we then define theLε-risk of f byRLε,P(f) := E(x,y)∼PLε(y, f(x)). Moreover, recall
thatP can be split into the marginal distributionPX on X and the regular conditional probability
P( · |x). Given a RKHSH of a bounded kernelk, [1] then showed that

fP,λ := arg inf
f∈H

λ‖f‖2H +RLε,P(f)

exists and is uniquely determined wheneverRLε,P(0) < ∞. Let us writeδ(x,y) for the Dirac
measure at some(x, y) ∈ X ×R. By considering the empirical measureD := 1

n

∑n
i=1 δ(xi,yi) of a

training setD := ((x1, y1), . . . , (xn, yn)) ∈ (X ×R)n, we then see that the correspondingfD,λ is
the solution of (1). Finally, we need to introduce the sets

Aδ
low(f) :=

{
(x, y) ∈ X ×R : |f(x)− y| > ε + δ

}
Aδ

up(f) :=
{
(x, y) ∈ X ×R : |f(x)− y| ≥ ε− δ

}
,

wheref : X → R is an arbitrary function andδ ∈ R. Moreover, we use the short formsAlow(f) :=
A0

low(f) andAup(f) := A0
up(f). Now we can formulate our first main result.

Theorem 2.1 LetP be a probability measure onX ×R andH be a separable RKHS with bounded
measurable kernel satisfying‖k‖∞ ≤ 1. Then, for alln ≥ 1, ρ > 0, δ > 0, andλ > 0 satisfying
δλ ≤ 4, we have

Pn
(
D ∈ (X ×R)n :

#SV (fD,λ)
n

> P
(
Aδ

low(fP,λ)
)
− ρ

)
≥ 1− 3e−

δ2λ2n
16 − e−2ρ2n

and

Pn
(
D ∈ (X ×R)n :

#SV (fD,λ)
n

< P
(
Aδ

up(fP,λ)
)

+ ρ
)
≥ 1− 3e−

δ2λ2n
16 − e−2ρ2n .

Before we present our second main result, we briefly illustrate Theorem 2.1 for the case where we
fix the regularization parameterλ and letn →∞.

Corollary 2.2 LetP be a probability measure onX×R andH be a separable RKHS with bounded
measurable kernel satisfying‖k‖∞ ≤ 1. Then, for allρ > 0 andλ > 0, we have

lim
n→∞

Pn
(
D ∈ (X ×R)n : P

(
Alow(fP,λ)

)
− ρ ≤ #SV (fD,λ)

n
≤ P

(
Aup(fP,λ)

)
+ ρ

)
= 1 .

Note that the above corollary exactly describes the asymptotic behavior of the fraction of support
vectors modulo the probability of the set

Aup(fP,λ)\Alow(fP,λ) =
{
(x, fP,λ(x)− ε) : x ∈ X

}
∪

{
(x, fP,λ(x) + ε) : x ∈ X

}
.

In particular, if the conditional distributionsP( · |x), x ∈ X, have no discrete components, then the
above corollary gives an exact description.

Of course, in almost no situation it is realistic to assume thatλ stays fixed if the sample sizen grows.
Instead, it is well-known, see [1], that the regularization parameter should vanish in order to achieve
consistency. To investigate this case, we need to introduce some additional notations from [6] that
are related to theLε-risk. Let us begin by denoting the BayesLε-risk byR∗

Lε,P := infRLε,P(f),
whereP is a distribution and the infimum is taken over all measurable functionsf : X → R. In
addition, given a distributionQ onR, [6] and [7, Chapter 3] defined theinnerLε-risksby

CLε,Q(t) :=
∫
R

Lε(y, t) dQ(y) , t ∈ R,

and theminimal innerLε-riskswere denoted byC∗Lε,Q := inft∈R CLε,Q(t). Obviously, we have

RLε,P(f) =
∫

X

CLε,P( · |x)

(
f(x)

)
dPX(x) , (5)
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and [6, Lemma 2.5], see also [7, Lemma 3.4], further established the intuitive formulaR∗
Lε,P =∫

X
C∗Lε,P( · |x) dPX(x). Moreover, we need the sets ofconditional minimizers

M∗(x) :=
{
t ∈ R : CLε,P( · |x)(t) = C∗Lε,P( · |x)

}
.

The following lemma collects some useful properties of these sets.

Lemma 2.3 Let P be a probability measure onX × R withR∗
Lε,P < ∞. ThenM∗(x) is a non-

empty and compact interval forPX -almost allx ∈ X.

Given a functionf : X → R, Lemma 2.3 shows that forPX -almost allx ∈ X there exists a unique
t∗(x) ∈M∗(x) such that∣∣t∗(x)− f(x)

∣∣ ≤ ∣∣t− f(x)
∣∣ for all t ∈M∗(x) . (6)

In other words,t∗(x) is the element inM∗(x) that has the smallest distance tof(x). In the follow-
ing, we sometimes writet∗λ(x) := t∗(x) if f = fP,λ and we wish to emphasize the dependence of
t∗(x) onλ. With the help of these elements, we finally introduce the sets

M δ
low(f) :=

{
(x, y) ∈ X ×R : |t∗(x)− y| > ε + δ

}
M δ

up(f) :=
{
(x, y) ∈ X ×R : |t∗(x)− y| ≥ ε− δ

}
,

whereδ ∈ R. Moreover, we again use the short formsMlow(f) := M0
low(f) andMup(f) :=

M0
up(f). Now we can formulate our second main result.

Theorem 2.4 LetP be a probability measure onX ×R andH be a separable RKHS with bounded
measurable kernel satisfying‖k‖∞ ≤ 1. Assume thatRLε,P(0) < ∞ and thatH is dense in
L1(PX). Then, for allρ > 0, there exist aδρ > 0 and aλρ > 0 such that for allλ ∈ (0, λρ] and all
n ≥ 1 we have

Pn
(
D ∈ (X×R)n : P

(
Mlow(fP,λ)

)
−ρ ≤ #SV (fD,λ)

n
≤ P

(
Mup(fP,λ)

)
+ρ

)
≥ 1−8e−δ2

ρλ2n.

If we choose a sequence of regularization parametersλn such thatλn → 0 andλ2
nn →∞, then the

resulting SVM isLε-risk consistent under the assumptions of Theorem 2.4, see [1]. For this case,
the following obvious corollary of Theorem 2.4 establishes lower and upper bounds on the number
of support vectors.

Corollary 2.5 LetP be a probability measure onX×R andH be a separable RKHS with bounded
measurable kernel satisfying‖k‖∞ ≤ 1. Assume thatRLε,P(0) < ∞ and thatH is dense in
L1(PX). Furthermore, let(λn) ∈ (0,∞) be a sequence withλn → 0 andλ2

nn →∞. Then, for all
ρ > 0, the probabilityPn of D ∈ (X ×R)n satisfying

lim inf
m→∞

P
(
Mlow(fP,λm

)
)
− ρ ≤ #SV (fD,λn

)
n

≤ lim sup
m→∞

P
(
Mup(fP,λm

)
)

+ ρ

converges to1 for n →∞.

In general, the probabilities of the setsMlow(fP,λ) andMup(fP,λ) are hard to control since, e.g.,
for fixed x ∈ X andλ → 0 it seems difficult to show thatfP,λ(x) is not “flipping” from the left
hand side ofM∗(x) to the right hand side. Indeed, for generalM∗(x), such flipping would give
different valuest∗λ(x) ∈ M∗(x) for λ → 0, and hence would result in significantly different sets
Mlow(fP,λ) andMup(fP,λ). As a consequence, it seems hard to show that, for probability measures
P whose conditional distributionsP( · |x), x ∈ X, have no discrete components, we always have

lim inf
λ→0

P
(
Mlow(fP,λ)

)
= lim sup

λ→0
P

(
Mup(fP,λ)

)
. (7)

However, there are situations in which this equality can easily be established. For example, assume
that the setsM∗(x) arePX -almost surely singletons. In this case,t∗λ(x) is in fact independentof λ,
and hence so areMlow(fP,λ) andMup(fP,λ). Namely, in this case these sets contain the pairs(x, y)
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for whichy is notcontained in the closed or openε-tube aroundM∗(x), respectively. Consequently,
(7) holds provided that the conditional distributionsP( · |x), x ∈ X, have no discrete components,
and hence Corollary 2.5 gives a tight bound on the number of support vectors. Moreover, if in
this case we additionally assumeε = 0, i.e., we consider the absolute loss, then we easily find
P(Mlow(fP,λ)) = P(Mup(fP,λ)) = 1, and hence Corollary 2.5 shows that the corresponding SVM
doesnot tend to produce sparse decision functions. Finally, recall that for this specific loss function,
M∗(x) equals the median ofP( · |x), and henceM∗(x) is a singleton whenever the median of
P( · |x) is unique.

Let us now illustrate Corollary 2.5 forε > 0. To this end, we assume in the following that the
conditional distributionsP( · |x) aresymmetric, i.e., for PX -almost allx ∈ X there exists acon-
ditional centerc(x) ∈ R such thatP(c(x) + A|x) = P(c(x) − A|x) for all measurableA ⊂ R.
Note that by consideringA := [0,∞) it is easy to see thatc(x) is a median ofP( · |x). Further-
more, the assumptionRLε,P(0) < ∞ imposed in the results above ensures that the conditional
meanf∗P(x) := E(Y |x) of P( · |x) existsPX -almost surely, and from this it is easy to conclude that
c(x) = f∗P(x) for PX -almost allx ∈ X. Moreover, from [8, Proposition 3.2 and Lemma 3.3] we
immediately obtain the following lemma.

Lemma 2.6 Let P be a probability measure onX × R such thatRLε,P(0) < ∞. Assume that the
conditional distributionsP( · |x), x ∈ X, are symmetric and that forPX -almost allx ∈ X there
exists aδ(x) > 0 such that for allδ ∈ (0, δ(x)] we have

P
(
f∗P(x) + [−δ, δ]

∣∣x)
> 0 , (8)

P
(
f∗P(x) + [ε− δ, ε + δ]

∣∣x)
> 0 . (9)

Then, forPX -almost allx ∈ X, we haveM∗(x) = {f∗P(x)} andf∗P(x) equalsPX -almost surely
the unique median ofP( · |x).

Obviously, condition (8) means that the conditional distributions have some mass around their me-
dianf∗P, whereas (9) means that the conditional distributions have some mass aroundf∗P± ε. More-
over, [8] showed that under the assumptions of Lemma 2.6, the correspondingε-insensitive SVM can
be used to estimate the conditional median. Let us now illustrate how the value ofε influences both
the accuracy of this estimate and the sparsity. To this end, let us assume for the sake of simplicity
that the conditional distributionsP( · |x) havecontinuousLebesgue densitiesp( · |x) : R→ [0,∞).
By the symmetry of the conditional distributions it is then easy to see that these densities are sym-
metric aroundf∗P(x). Now, it follows from the continuity of the densities, that (8) is satisfied if
p(f∗P(x)|x) > 0, whereas (9) is satisfied ifp(f∗P(x) + ε|x) > 0. Let us first consider the case where
the conditional distributions are equal modulo translations. In other words, we assume that there
exists a continuous Lebesgue densityq : R → [0,∞) which is symmetric around 0 such that for
PX -almost allx ∈ X we have

q(y) = p(f∗P(x) + y|x) , y ∈ R.

Note that this assumption is essentially identical to a classical “signal plus noise” assumption. In
the following we further assume thatq is unimodal, i.e.,q has its only local and global maximum
at 0. From this we easily see that (8) is satisfied, and (9) is satisfied ifq(ε) > 0. By Lemma
2.6 and the discussion around (7) we then conclude that under the assumptions of Corollary 2.5
the fraction of support vectors asymptotically approaches2Q([ε,∞)), whereQ is the probability
measure defined byq. This confirms the intuition thatlarger values ofε lead to sparser decision
functions.In particular, ifQ([ε,∞)) = 0, the corresponding SVM producessuper sparsedecision
functions, i.e., decision functions whose number of support vectors doesnot grow linearly in the
sample size. However, not surprisingly, there is a price to be paid for this sparsity. Indeed, [8,
Lemma 3.3] indicates that the size ofq(ε) has a direct influence on the ability offD,λ to estimate
the conditional medianf∗P. Let us describe this in a little more detail. To this end, we first find by
[8, Lemma 3.3] and the convexity oft 7→ CLε,Q(t) that

CLε,Q(t)− C∗Lε,Q ≥ q(ε) ·
{

t2/2 if t ∈ [0, ε]
tε− ε2/2 if t ≥ ε.

By a literal repetition of the proof of [8, Theorem 2.5] we then find the self-calibration inequality

‖f − f∗P‖L1(PX) ≤
√

2/q(ε)
√
RLε,P(f)−R∗Lε,P , (10)
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which holds for allf : X → R with RLε,P(f) − R∗Lε,P ≤ ε2/2. Now, if we are in the situation
of Corollary 2.5, then we know thatRLε,P(fD,λn) → R∗Lε,P in probability forn → ∞, and thus
(10) shows thatfD,λn

approximates the conditional medianf∗P with respect to theL1(PX)-norm.
However, the guarantee for this approximation becomes worse the smallerq(ε) becomes, i.e., the
larger ε is. In other words,the sparsity of the decision functions may be paid by less accurate
estimates of the conditional median.On the other hand, our results also show thatmoderate values
for ε can lead to both reasonable estimates of the conditional median and relatively sparse decision
functions. In this regard we further note that one can also use [8, Lemma 3.3] to establish self-
calibration inequalities that measure the distance off to f∗P only up toε. In this case, however, it
is obvious that such self-calibration inequalities are worse the largerε is, and hence the informal
conclusions above remain unchanged.

Finally, we like to mention that, if the conditional distributions are not equal modulo transla-
tions, then the situation may become more involved. In particular, if we are in a situation with
p(f∗P(x)|x) > 0 andp(f∗P(x) + ε|x) > 0 but infx p(f∗P(x)|x) = infx p(f∗P(x) + ε|x) = 0, self-
calibration inequalities of the form (10) are in general impossible, and weaker self-calibration in-
equalities require additional assumptions onP. We refer to [8] where the caseε = 0 is considered.

3 Proofs

SettingC := 1
2λn and introducing slack variables, we can restate the optimization problem (1) as

minimize
1
2
‖f‖2H + C

n∑
i=1

(ξi + ξ̃i) (11)

subject to f(xi)− yi ≤ ε + ξi,

yi − f(xi) ≤ ε + ξ̃i,

ξi, ξ̃i ≥ 0 for all i = 1, . . . , n.

In the following we denote the (unique) solution of (11) by(f∗, ξ∗, ξ̃∗), where we note that we have
f∗ = fD,λ. It is well-known, see e.g. [2, p. 117], that the dual optimization problem of (11) is

maximize
n∑

i=1

yi(α̃i − αi)− ε

n∑
i=1

(α̃i + αi)−
1
2

n∑
i,j=1

(α̃i − αi)(α̃j − αj)k(xi, xj) (12)

subject to 0 ≤ αi, α̃i ≤ C for all i = 1, . . . , n,

wherek is the kernel of the RKHSH. Furthermore, if(α∗1, α̃
∗
1, . . . , α

∗
n, α̃∗n) denotes a solution of

(12), then we can recover the primal solution(f∗, ξ∗, ξ̃∗) by

f∗ =
n∑

i=1

(α̃∗i − α∗i )k(xi, · ) , (13)

ξ∗i = max{0, f∗(xi)− yi − ε} , (14)

ξ̃∗i = max{0, yi − f∗(xi)− ε} , (15)

for all i = 1, . . . , n. Moreover, the Karush-Kuhn-Tucker conditions of (12) are

α∗i (f
∗(xi)− yi − ε− ξ∗i ) = 0 , (16)

α̃∗i (yi − f∗(xi)− ε− ξ̃∗i ) = 0 , (17)

(α∗i − C)ξ∗i = 0 , (18)

(α̃∗i − C)ξ̃∗i = 0 , (19)

ξ∗i ξ̃∗i = 0 , (20)

α∗i α̃
∗
i = 0 , (21)

wherei = 1, . . . , n. Finally, note that by settingβi := α̃i − αi the problem (12) can be simplified
to (3), and consequently, a solutionβ∗ of (3) is of the formβ∗ = α̃∗ − α∗. The following simple
lemma provides lower and upper bounds for the set of support vectors.
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Lemma 3.1 Using the above notations we have{
i : |fD,λ(xi)− yi| > ε

}
⊂

{
i : β∗i 6= 0

}
⊂

{
i : |fD,λ(xi)− yi| ≥ ε

}
.

Proof: Let us first prove the inclusion on the left hand side. To this end, we begin by fixing an index
i with fD,λ(xi) − yi > ε. By fD,λ = f∗ and (14), we then findξ∗i > 0, and hence (18) implies
α∗i = C. From (21) we concludẽα∗i = 0 and hence we haveβ∗i = α̃∗i − α∗i = −C 6= 0. The case
yi − fD,λ(xi) > ε can be shown analogously, and hence we obtain the first inclusion. In order to
show the second inclusion we fix an indexi with β∗i 6= 0. By β∗i = α̃∗i − α∗i and (21) we then have
eitherα∗i 6= 0 or α̃∗i 6= 0. Let us first consider the caseα∗i 6= 0 andα̃∗i = 0. The KKT condition (16)
together withfD,λ = f∗ impliesfD,λ(xi)−yi− ε = ξ∗i and sinceξ∗i ≥ 0 we getfD,λ(xi)−yi ≥ ε.
The second casẽα∗i = 0 can be shown analogously.

We further need the following Hilbert space version of Hoeffding’s inequality from [12, Chapter 3],
see also [7, Chapter 6.2] for a slightly sharper inequality.

Theorem 3.2 Let (Ω,A,P) be a probability space andH be a separable Hilbert space. Moreover,
let η1, . . . , ηn : Ω → H be independent random variables satisfyingEPηi = 0 and‖ηi‖∞ ≤ 1 for
all i = 1, . . . , n. Then, for allτ ≥ 1 and alln ≥ τ , we have

P
(∥∥∥ 1

n

n∑
i=1

ηi

∥∥∥
H

< 4
√

τ

n

)
≥ 1− 3e−τ .

Finally, we need the following theorem, see [7, Corollary 5.10], which was essentially shown by
[13, 5, 3] .

Theorem 3.3 LetP be a probability measure onX ×R andH be a separable RKHS with bounded
measurable kernel satisfying‖k‖∞ ≤ 1. We writeΦ : X → H for the canonical feature map ofH,
i.e.,Φ(x) := k( · , x), x ∈ X. Then for allλ > 0 there exists a functionh : X ×R→ [−1, 1] such
that for all n ≥ 1 and allD ∈ (X ×R)n we have

‖fD,λ − fP,λ‖H ≤ λ−1‖EDhΦ− EPhΦ‖H ,

whereED denotes the empirical average with respect toD.

Proof of of Theorem 2.1:In order to show the first estimate we fix aδ > 0 and aλ > 0 such that
δλ ≤ 4. Let τ := λ2δ2n/16 which impliesn ≥ τ . Combining Theorems 3.2 and 3.3 we then obtain

1− 3e−τ ≤ Pn
(
D ∈ (X ×R)n : ‖EDhΦ− EPhΦ‖H ≤ 4

√
τ/n

)
≤ Pn

(
D ∈ (X ×R)n : ‖fD,λ − fP,λ‖H ≤ δ

)
. (22)

Let us now assume that we have a training setD ∈ (X×R)n such that‖fP,λ−fD,λ‖H ≤ δ. Given
a pair(x, y) ∈ Aδ

low(fP,λ), we then have

ε + δ < |fP,λ(x)− y| ≤ |fD,λ(x)− y|+ |fP,λ(x)− fD,λ(x)| ≤ |fD,λ(x)− y|+ δ

by the triangle inequality and‖k‖∞ ≤ 1 which implies‖ · ‖∞ ≤ ‖ · ‖H . In other words, we have
Aδ

low(fP,λ) ⊂ Alow(fD,λ). Consequently, Lemma 3.1 yields

#SV (fD,λ) ≥ #
{
i : |fD,λ(xi)− yi| > ε

}
≥ #

{
i : |fP,λ(xi)− yi| > ε + δ

}
=

n∑
i=1

1Aδ
low(fP,λ)(xi, yi) .

Combining this estimate with (22) we then obtain

Pn
(
D ∈ (X ×R)n :

#SV (fD,λ)
n

≥ 1
n

n∑
i=1

1Aδ
low(fP,λ)(xi, yi)

)
≥ 1− 3e−

δ2λ2n
16 .

Moreover, Hoeffding’s inequality, see, e.g. [4, Theorem 8.1], shows

Pn
(
D ∈ (X ×R)n :

1
n

n∑
i=1

1Aδ
low(fP,λ)(xi, yi) > P

(
Aδ

low(fP,λ)
)
− ρ

)
≥ 1− e−2ρ2n
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for all ρ > 0 andn ≥ 1. From these estimates and a union bound we conclude the first inequality.
In order to show the second estimate we first observe that for training setsD ∈ (X × R)n with
‖fP,λ − fD,λ‖H ≤ δ we haveAup(fD,λ) ⊂ Aδ

up(fP,λ). Lemma 3.1 then shows

#SV (fD,λ) ≤
n∑

i=1

1Aδ
up(fP,λ)(xi, yi) ,

and hence (22) yields

Pn
(
D ∈ (X ×R)n :

#SV (fD,λ)
n

≤ 1
n

n∑
i=1

1Aδ
up(fP,λ)(xi, yi)

)
≥ 1− 3e−

δ2λ2n
16 .

Using Hoeffding’s inequality analogously to the proof of the first estimate we then obtain the second
estimate.

Proof of of Corollary 2.2:We first observe that we haveAδ
low(fP,λ) ⊂ Aδ′

low(fP,λ) for 0 ≤ δ′ ≤ δ.
Let us show ⋃

δ>0

Aδ
low(fP,λ) = Alow(fP,λ) . (23)

Obviously, the inclusion “⊂” directly follows from the above monotonicity. Conversely, for(x, y) ∈
Alow(fP,λ) we have|f(x) − y| > ε and hence|f(x) − y| > ε + δ for someδ > 0, i.e., we have
shown(x, y) ∈ Aδ

low(fP,λ). From (23) we now conclude

lim
δ↘0

P
(
Aδ

low(fP,λ)
)

= P
(
Alow(fP,λ)

)
. (24)

In addition, we haveAδ′

up(fP,λ) ⊂ Aδ
up(fP,λ) for 0 ≤ δ′ ≤ δ, and it is easy to check that⋂

δ>0

Aδ
up(fP,λ) = Aup(fP,λ) . (25)

Indeed, if(x, y) ∈ Aδ
up(fP,λ) for all δ > 0 we have|f(x) − y| ≥ ε − δ for all δ > 0, from which

we conclude|f(x)−y| ≥ ε, i.e.(x, y) ∈ Aup(fP,λ). Conversely, the inclusion “⊃” directly follows
from the above monotonicity of the setsAup. From (25) we then conclude

lim
δ↘0

P
(
Aδ

up(fP,λ)
)

= P
(
Aup(fP,λ)

)
. (26)

Let us now fix a decreasing sequence(δn) ⊂ (0, 1) with δn → 0 andδ2
nn → ∞. Combining (24)

and (26) with the estimates of Theorem 2.1, we then obtain the assertion.

Proof of Lemma 2.3:Since the loss functionLε is Lipschitz continuous and convex int, it is easy
to verify thatt 7→ CLε,P( · |x)(t) is Lipschitz continuous and convex forPX -almost allx ∈ X, and
henceM∗(x) is a closed interval. In order to prove the remaining assertions it suffices to show
that limt→±∞ CLε,P( · |x)(t) = ∞ for PX -almost allx ∈ X. To this end, we first observe that
R∗Lε,P < ∞ impliesC∗Lε,P( · |x) < ∞ for PX -almost allx ∈ X. Let us fix such anx, a B > 0,
and a sequence(tn) ⊂ R with tn → −∞. By the shape ofLε, there then exists anr0 > 0 such
thatLε(y, t) ≥ 2B for all y, t ∈ R with |y − t| ≥ r0. Furthermore, there exists anM > 0 with
P([−M,M ] |x) ≥ 1/2, and sincetn → −∞ there further exists ann0 ≥ 1 such thattn ≤ −M−r0

for all n ≥ n0. Fory ∈ [−M,M ] we thus havey − tn ≥ r0, and hence we finally find

CLε,P( · |x)(tn) ≥
∫

[−M,M ]

Lε(y, tn) dP(y|x) ≥ B

for all n ≥ n0. The casetn →∞ can be shown analogously.

For the proof of Theorem 2.4 we need the following two intermediate results.

Theorem 3.4 LetP be a probability measure onX ×R andH be a separable RKHS with bounded
measurable kernel satisfying‖k‖∞ ≤ 1. Assume thatRLε,P(0) < ∞ and thatH is dense in
L1(PX). Then, for allδ > 0 andρ > 0, there exists aλ0 > 0 such that for allλ ∈ (0, λ0] we have

PX

({
x ∈ X : |fP,λ(x)− t| > δ for all t ∈M∗(x)

})
< ρ .
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Proof: SinceH is dense inL1(PX) we haveinff∈H RLε,P(f) = R∗Lε,P by [9, Theorem 3], and
hencelimλ→0RLε,P(fP,λ) = R∗Lε,P. Now we obtain the assertion from [6, Theorem 3.16].

Lemma 3.5 LetP be a probability measure onX ×R andH be a separable RKHS with bounded
measurable kernel satisfying‖k‖∞ ≤ 1. Assume thatRLε,P(0) < ∞ and thatH is dense in
L1(PX). Then, for allδ > 0 andρ > 0, there exists aλ0 > 0 such that for allλ ∈ (0, λ0] we have

P
(
M2δ

low(fP,λ)
)
≤ P

(
Aδ

low(fP,λ)
)

+ ρ and P
(
M2δ

up(fP,λ)
)
≥ P

(
Aδ

up(fP,λ)
)
− ρ .

Proof: We writet∗λ(x) for the real number defined by (6) forf(x) := fP,λ(x). Then we have

M2δ
low(fP,λ) ⊂

(
M2δ

low(fP,λ) ∩
{
(x, y) ∈ X ×R : |fP,λ(x)− t∗λ(x)| ≤ δ

})
∪

{
(x, y) ∈ X ×R : |fP,λ(x)− t(x)| > δ for all t(x) ∈M∗(x)

}
.

Moreover, given an(x, y) ∈ M2δ
low(fP,λ) ∩ {(x, y) ∈ X ×R : |fP,λ(x)− t∗λ(x)| ≤ δ}, we find

ε + 2δ < |t∗λ(x)− y| ≤ |fP,λ(x)− t∗λ(x)|+ |fP,λ(x)− y| ≤ δ + |fP,λ(x)− y| ,
i.e., we have(x, y) ∈ Aδ

low(fP,λ). Estimating the probability of the remaining set by Theorem 3.4
then yields the first assertion. In order to prove the second estimate we first observe that

Aδ
up(fP,λ) ⊂

(
Aδ

up(fP,λ) ∩
{
(x, y) ∈ X ×R : |fP,λ(x)− t∗λ(x)| ≤ δ

})
∪

{
(x, y) ∈ X ×R : |fP,λ(x)− t(x)| > δ for all t(x) ∈M∗(x)

}
.

For (x, y) ∈ Aδ
up(fP,λ) ∩ {(x, y) ∈ X ×R : |fP,λ(x)− t∗λ(x)| ≤ δ} we further have

ε− δ ≤ |fP,λ(x)− y| ≤ |fP,λ(x)− t∗λ(x)|+ |t∗λ(x)− y| ≤ δ + |t∗λ(x)− y| ,
i.e., we have(x, y) ∈ M2δ

up(fP,λ). Again, the assertion now follows from Theorem 3.4 .

Proof of Theorem 2.4:Analogously to the proofs of (24) and (26), we find

lim
δ↘0

P
(
M δ

low(fP,λ)
)

= P
(
Mlow(fP,λ)

)
and lim

δ↘0
P

(
M δ

up(fP,λ)
)

= P
(
Mup(fP,λ)

)
Combining these equations with Theorem 2.1 and Lemma 3.5, we then obtain the assertion.
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